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0. INTRODUCTION

This paper attempts a systematic study of spherically invariant pro-
cesses (SIP's), i.e., processes whose finite dimensional distributions are
mixtures of Gaussian distributions. Section 1 contains the basic properties
of SIP's, including their representation in terms of Gaussian processes,
which are used throughout. The structure of the nonlinear space of a second
order SIP is considered in Section 2. Section 3 solves the problem of
discriminating between two second order SIP's, and Section 4 the nonlinear
estimation problem for second order SIP's and in particular for Gaussian
processes.

Our basic notation and terminology is as follows. X = (Xt’ teT) is
a stochastic process defined on a probability space (2,B,P). T is an arbitrary
index set; sometimes it is taken to be a real line interval, but since this is
clear from the context it is not emphasized. B is usually taken to be B(X),
the o-field generated by the random variables of the process X, or B(X), the
completion of B(X) with respect to P. For each we, X(w) is the corresponding
sample path of the process X, which is an element of H{r, the space of all
functions defined on T. X induces a probability measure u = pex1 on
(l{,B(IRT)), where B(HQT) is the o-field generated by the cylinder sets of D{T.
X is a coordinate process if (2,B,P) = (DQT,B(HIT),u) and Xt(w) = w(t). The
nonlinear space of X, LZ(X) = LZ(Q,B(X),P), is the set of all B(X)-measurable
random variables with finite second moment which are called (nonlinear) Lz-
functionals of X. X is a second order process if EXi < = for all teT. The
linear space of a second order process X, H(X), is the closed subspace of

L,(X) spanned by Xt’ teT, and its elements are called linear L2~functionals of

X
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1. SPHERICALLY INVARIANT PROCESSES (SIP's)

It is well known that all mean square estimation problems on Gaussian
processes have linear solutions and that Gaussian processes are closed under
linear operations. Vershik (1964) showed that these two properties do not
uniquely characterize the Gaussian processes. They do, however, characterize
the class of SIP's.

Let X = (Xt,

teT) be a second order process with mean m(t) and covariance
function r(t,s). Then X is said to be an SIP if all r.v.'s in H(X-m) having
the same variance have the same distribution. Also, X is called degenerate
if H(X-m) is finite dimensional. Since the nonlinear structure of a non-
degenerate and a degenerate SIP are considerably different, we will restrict
our present investigation to the nondegenerate case; the finite dimensional
case will be treated elsewhere. A SIP X is a mixture of Gaussian processes.
It can be determined by its mean m(t), a covariance function R(t,s), and

a probability distribution F(a) on Hl+; the characteristic function of

X 1,...,th (tl,...,tkeT) is given by

o

- 5 IR(t.,t.) (u,-m(t;)) (u;-m(t.))
2 1 i i

(1.1) fe J T Y 4R ()

(Vershik (1964) and Nagornyi (1970)). In order to avoid the trivial case

where X is a constant process, we will assume throughout that F(O+) <

Such an SIP determined by m, R and F will be denoted, in short, by SIP(m,R;F).

A probability measure p on the sample space (DQT,B(HIT)) is said to be a
spherically invariant measure (SIM) if it is induced by a SIP, or, equiv-
alently, if the coordinate process on (H{t,B(HQT),u) is a SIP. A SIM
induced by a SIP (m., R,F) will be denoted by SIM(m,R;F). When F puts all

its mass at the point 1 the SIP (m,R;F) and the SIM (m,R;F) become

" “‘**"'an*“wuw' ‘.,‘\..u‘h"ﬂw")‘.
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Gaussian with mean m and covariance R; we will use the notation GP(m,R) and

GM(m,R) respectively.

LEMMA 1.1 Let U be an SIM (m,R:F) and for each a > 0 let u% be a

GM(m,aR).  Then
(1.2) W(E) = [u (E)dF(a)  for all EcB(R ).

Furthermore, for any measurable function 6 on (BQT,B(HIT),u) which is non-

negative or integrable we have
(1.3) Eo = [E BdF(x)

where EO = f@du and Eae = deuu.

Proof: For each fixed cylinder set E, ua(E) is a measurable function of a«;
and the family of sets E such that ua(E) is a-measurable is a o-field. There-
fore, ua(E) is a-measurable for every EeB(H%T). Thus fua(E)dF(a) is well-
defined and is easily checked to be a probability measure. The characteristic
functions of its finite dimensional distributions are given by‘(l.l), and since
they uniquely determine a probability measure on (HIT,B(BlT)), we have (1.2).
(1.3) holds for 6 = lE (EeB(ﬂ?T)) by (1.2). Hence it holds for simple

functions 6, and thus for 6 nonnegative by considering a sequence of simple
functions increasing to 6. For 6 integrable, consider the positive and nega-

tive parts separately.

It follows from Lemma 1.1 that if X is a coordinate SIP (m,R;F) then,

under each u X is a GP(m,aR). The following theorem generalizes this fact.

(A 0d

THEOREM 1.2. Let X be a SIP (m,R;F) on (2,B(X),P). Then for each
a > 0 there exists a probability measure Pa on (2,B(X)) such that Uy = POL'X_1

is a GM(m,aR). Hence under each Pu, X is a GP(m,0R) and the corresponding

vy g Py b B Ry -




formulae (1.2) and (1.3) hold.

Proof: Let u be the SIM induced on (R',B(R')) by X and let b, a0,

be GM(m, R) as in Lemma 1.1. Let C(HKT) be the field of all cylinder sets

in BCR '} and €00 = X C(R) = B(X).  For each BeC(Y), define P_(D) =
ua(E) WP = X_l(E). We claim that Pa is well defined. It is not hard to
see (by looking at their characteristic functions) that when restricted to a
finite dimensional space My is absolutely continuous with respect to u. Thus
iF D= XE) = 0P ), BEeCeR Yy, then w(E) = P(D) = W(E)) and hence
ua(E) = ua(E'). Consequently, Pa is a probability measure on the field C(X)

and hence it has a unique extension to a probability measure on B(X). Now

it follows that Bg= Pa-X'l since the two measures coincide on C(HQT). 0

(1.2) in Theorem 1.2 was proved by Gualtierotti (1974) for P an SIM on

\ a separable hilbert space. Note that since X is of second order, it follows
from
2 2 2
w > EXS = fEuXtdF(a) = [[m“(t) + aR(t,t)]dF(a)
that
| a; = [adF(a) < © .

Sewett; 4T

)

y | THEOREM 1.3. Let X be a SIP (0,R;F) and {€ } a sequence in H(X). Then
|
{ there exist versions of the En’s such that under each Pa the r.v.'s {ﬁn} are

jointly Gaussian with zero mean and covariance

- a —
(1.4) Eaangm B 5; Eenlnm = 0lElEngm .

o0 Q0
and, moreover, for any measurable function g on (R ,B(R)) we have

(1.5) E8(E 26550 0) =Elg(yﬁ £y /&gz,...)

whenever one of these expectations exists.

g ‘q&n*5‘1i
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Proof: In view of Theorem 1.2 and the fact that every measurable function
f8(w) on (2,B(X)) is of the form f(X(w)) for some measurable function f on

(H{1,B(B{r), it suffices to prove the assertion for X a coordinate process.

(n)

T a S .
For each r.v. &n(x), xeR , there is a sequence Zi (x) of finite linear

combinations of {ft(x)=x(t),teT} such that En(x) = limi an)(x) a.s. [u].

Let Cn = (xeR'T: an)(x) -+ + as 1 > «} and let C =r1Cn. C is clearly a

measurable linear space having p probability 1. Now take each En to be
limi an}x) for xeC and 0 for x4C. Since 1 = u(C) = fua(c)dF(a) by Lemma

. 1.1, and F(0') < 1, there is a. > 0 such that b, (€) = 1. Let Y be a G(O,R)

0
on some probability space (QO,BO,Q). Then since C is a linear space we have

0

for all a 2 0
n,(C) = Q(va YeC) = Q(va, YeC) = u_ (C) = 1
(0} 0 a
- (n) : .
.‘ = >
Thus £n 11mi Qi a.e. [uu], for all a > 0. Since under each Moo
{an),nzl,izl} is a Gaussian family, it follows that {En} are jointly
Gaussian under each M-
To show (1.4) we recall that for a Gaussian family a.s. convergence is

‘ equivalent to mean square convergence. Thus

" e 4 g

lim E an)lgm)
= e

o n’m
i,] J

! EEE

1"

. (n),(m) _
:IT aElli Qj = aEIEiEj %

PO SV MG S

o]

and hence E&iEj = fEaiiEde(a) = alEIEiEi = al E

‘E.a..

It is easy to see that {gn} under Hy has the same probability law as

(Vo En} under p;. (1.5) is now evident. 0

We now introduce a r.v. A which will play a central role in the repre-

sentation of a SIP as well as in the study of its nonlinear space.

B e
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Pick an orthogonal sequence {Cn} from H(X) with Eﬂﬁ = 0. Then

by Theorem 1.3 we may assume that under each P_, {£ } is a sequence of

¢ : ; 2 .
independent zero mean Gaussian r.v.'s with Eagn = a. Define

n
L3R
e g gi

By the law of large numbers, we have lim An =0 a.s. [Pa]. Let G* =
{wef: An(w) > «}.  Then
P(C*) = fPa(C*)dF(a) = [dF(a) = 1

Thus An converges a.s. [P]. Let

lim An(w) 1f weC*
(1.6) A(w) =
0 if wéC*

Then

(1.7)

b
n
QR
»
0

(el s

a
and the distribution function of A is F since

(1.8) P(A<a) = fPa(Asa)dF(a) = fl[o’a](a)dF(a) = F(a).

If we put 9 = {weQ: A(w) = a} then P,(8,) = 1, and thus the probability

measures Pa’ o > 0, are mutually singular (which is of course well known).

We now arrive at the main theorem of this section.

THEOREM 1.4. A nondegenerate second order process X on (R,B(X),P) is a

SIP (O;R;F) if and only if it has the representation
(1.9) R = ey, a.s. for all teT

where A is a nonnegative r.v. with distribution function F and, conditioned

on A > 0, Y is a nondegenerate GP(0,R) independent of A.

I R
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Proof: The "if" part is clear. To show the "only if'" part, let A be the

r.v. defined by (1.6) and let

X

if A >0
A172
€1 10) Y =
0 if A =0.
Then it follows from Theorem 1.2 and (1.7) that P(Xt = Al/zYt) =

fpa(xt=a1/2Yt)dF(a) = 1; and that Y is a GP(0,R) under each P for a > 0

and thus also under 5(') = (1—F(0+))—1f Pa(')dF(a), which is just the
(0,)

conditional probability of P given A > 0. Now for DeB(IR) and EeB(liT)

we have

P(AD, YeE) = ——— [ 1 ()P (YeE)dF(a)
1-F(0' ) (0,®)

~— P(AeD) * P(YeE)
1-F(0")

P(AeD)  P(YeE)

since Pa(YeE) = P(YeE) for o > 0. Hence A and Y are conditionally independent

given A > 0. 0

The representation (1.9) of a SIP was first noted by Besson (1974) who,
without constructing the r.v. A, showed its existence by employing a result
in Bretagnolle et. al (1966) concerning symmetrically dependent (exchangeable)
r.v.'s. Our approach seems more elementary and direct, and also yields
further results.

(1.9) reveals that a SIP is merely a conditional Gaussian process.
(More specifically, given A = a, the SIP (0,R;F) is a GP (0,aR).) By

requiring F(0+) = 0, Theorem 1.4 may be stated in a more appealing way.
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THEOREM 1.5. A nondegenerate second order process X on (§,B(X),P)
+ o . a
is a SIP (0,R;F) satisfying F(0 ) = 0 if and only if it has the repre-
sentation
teT
where Y is a nondegenerate GP (0,R) and A is a positive r.v. independent

of Y having distribution function F.

Theorem 1.4 enables one to read off many properties of SIP's immediately.
For instance a SIP (0,R;F) X is of order p > 0, i.e., E]Xt[p < o jif and
only if EAP/2 = fap/zdF(a) < o, If X is of order 2, then continuity in
probability of X is equivalent to mean square continuity [Besson (1974)].
All the usual (local and global) analytic properties of the sample functions
of X depend only on R and not on F, while properties of maxima and crossings
depend on both R and F. Kallianpur's zero-one law and Slepian's lemma
take the following form for SIP's. (The proofs are straightforward and

are thus omitted.)

COROLLARY 1.6. If | is an SIM (0,R;F) and L a B(HQT)-measurable linear

subspace of HIT, then u(L) = F(O+) or 1. Furthermore, W(L) = 1 if and only

if for some oo > 0, L is B&(BIT)—measurable and ua(L) =1,

In Corollary 1.6 M, are as in Lemma 1.1 andlg(R'r), resp. E&(H{T),

denotes the completion of B(HZT) with respect to u, resp. My

COROLLARY 1.7. If Xi is a separable SIP (O’Ri;Fi)’ 1 = 1,2, and if

Rl(t,t) = R,(t,t) 5 Rl(t,s) < Rz(t,s) for all t,seT ,

rl(o*) F2(0+) , Fi(@) s Ey(a) for all a > 0,

then for all u,

o NS
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P{sup X, (t) < u}l < P{sup X,(t) < u}.
teT teT. ©

We now give an interesting example of a sample continuous martingale

whose family of o-fields is not continuous. Let W = {W_, 0<t<=} be a

1/2 : : .
/ W where A is a nonnegative r.v. independent

t’

Wiener process, and let X = A
of W and whose o-field is nontrivial. It is easily checked that X is a
sample continuous martingale. Let Bt = B(Xg, 0<s<t), 0<t<wo. We will show

that Bt is not continuous at t = 0. Fix t > 0 and consider the quadratic

variation M(t) of X over the interval [0,t]. We have |

n-1
Mee) = 1im § (x( o - xd 07?
n j=1 2 2
n-1

2 o8 T

=Alim [ W0 - wd )1°
n j=1 2" 2"

= At a.s.

where the last equality is a theorem of Lévy [Doob (1953)]. This implies

that A is Bt—measurable for all t > 0.




2. THE NONLINEAR SPACE OF A SIP.

In this section we study the structure of the nonlinear space LZ(X)
of a SIP(O,R;F) X, using the canonical representation of X in Theorem 1.4
and the well known properties of the nonlinear space of a GP. When X is
second order, the relation between the linear space H(X) and the nonlinear
space LZ(X) is shown in Theorem 2.4 and complete orthonormal sets (CONS's)
in LZ(X) are given in Theorems 2.2 and 2.3. When F has a moment generating
function, Theorem 2.5 shows that LZ(X) has the orthogonal decomposition
ebEOHP(X)’ where Hp(X) is the p-th homogeneous chaos of X; and Theorem 2.6
shows the relation between HP(X) and H(X) and gives CONS's in each Hp(x).

Theorems 2.2 to 2.4 are based on the following property.

LEMMA ~.1 Let B1 and B, be two independent O-fields on a probability
.; space (§), B, P) such that B is generated by Bl and BZ' Then

LZ(Q,B,P) = LZ(Q’Bl’p) ® LZ(Q,BZ,P)

— e o A il

under the correspondence fg <+ f @ g

Proof: We will write Lq(Bi) for LZ(Q,Bi,P). Consider the mapping taking

|
|
i_ f ® g to fg for all feLZ(Bl), geLz(Bz). From the independence of 81 and B2
L it follows that fg e LZ(B) and

I

< fl ® gy f2 ® 8; * LQ(BI)“LZ(BQ) = < flgl’ f2g2 > LZ(B)
Thus the mapping preserves inner products and it has a unique extension to
an isomorphism between the closed subspace spanned by {f®g}, which is in fact
L:‘Bl) ® LZ(Bz), and the closed subspace of LZ(B) spanned by {fg}. The
assertion is proved if we show that M = {Fg:feL?(Bl), chZ(Bz)} is a complete

set in L,(B).

= A - =
B T e m.\w»,-‘m&"‘
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Consider the family B* of sets of the form un(E.nF.), E.eB, and
| B s | i1

FieBZ. Since B1 and 82 are fields and they generate B, it is readily seen

that B* is a field generating B. We may even assume, after a moment's
reflection, that the sets EinFi, 1 <1 <n, are disjoint. Now a standard

n
monotone class argument shows that the set {lu?(EinFi) = zllEilFi}

is complete in L2(B). Thus M is complete. . 0

s

Let X = {Xt,teT} be a second order nondegenerate SIP(O,R;F) and X = A®Y
its canonical representation of Theorem 1.4. Let {gy,yer} (T linearly ordered)

and {en, 1<nsN} (N may be infinite) be CONS's in H(X) and Lz(dF) respectively.

THEOREM 2.2 If F(O') = O then the family

(2.1) A-____,_l______)l/z’H 31‘/25
N R i m AL MR

Vi (o ey
1heeepy! P "'pk A Yy

L

s el L )
= (< A e —— A atle A

n p1 | (P -pk! A pl,'—"al,‘ Yl Pk,al Yk
where 1 <n <N, k =21, PpteectPy = P = {0}, Yy S-S Yk in ', is a CONS in

L, (X)

Proof: Assume F(0+) = 0. Then B(A) and B(Y) are independent o-fields generating

B(X). By Lemma 2.1 we have

(2.2) Ly(X) = Ly(A) ® Ly(Y)

1 (SR
It is easily verified that A°H(Y) = H(X) and {nY = (Klﬂz gY,yer} is complete
in H(Y). (Recall that Y is a GP.) Indeed {HY,YGT} is a CONS in H{Y) since

Q a
1

1
e = e, =
(by Theorem 1.3). Now (2.2) and the celebrated theorem of Cameron and Martin

yield the result. 0

e

R AN

SP%
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13
We remark that in dealing with a SIP, the case F(0+) =

(i.e. X cannot be zero with positive probability) is of main interest.
We now show how .to obtain the counterpart of Theorem 2.2 when

0 < F(0+) <1, Let Ql = {we i A(w) = 0}, QZ = {weQ: A(w)>0}, and

consider the restrictions of (,B(X),P) to Ql and Qz respectively,

(QI,BQI(X)’ PQI) and (QZ’BQZ(X)’PQ ). Then

2
1 1 2 2
It is easily seen that LZ(QI’Q%(X)’PQE); R
where R is equiped with the usual inner product (<x,y>n2= xy). Also PQ =
2

Q, where Q is defined on B(X) by Q(°) = / P (0)dF(a), and thus
) (0,) a

= el
LZ(QZ’BQZ(X),PQZ) T LZ(Q’B(X)’P_I-F(0+))

_L =
under the correspondence (1-F(0+)) * IQ f <« f. But under P
2
a1
SIP(0,R;G) where G(a) = (1-F(0+)) ?(F(a)-F(0+)), and Theorem 2.2 yields

, Xiis a

the following CONS.

THEOREM 2.3 If 0 < F(0+) < 1 and if {en, 1<n<N} is a CONS in Lz(d{F—F(0+)})

then the family

1 L
(F(O+)) s 1{0}(A),
(2.3)
1 I
SEE S IRARTY wy (A) € (A)( . ,)( )Hp A (g )...H AGE. )

p}\’ Yk

where 1 <n <N, k =1, p1+...+pk =p 20, Yy L e Y in T, is a CONS in

LZ(X)'

Py,

Z
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Consider the correspondence

1 L o 5
e (&) Coyv——1"G=1" R & (B, ) - B A (E_) #>
n pl!...pk! A pl;d“. Y, pk’GI' 0
(2.4) - o
p! 3 Py~ 2k
e (A) G Fie U TE 3 )
N Y, Yy

when F(0+) = 0, and when 0 < F(0+) < 1 the correspondence

1 %
L Gy Ho®:

(2.5)
e e 1 L 5
(1-F(O+)) 1(0,w)(A)-en(A)(ﬁljjijI?J ) le,%I(EYl)...Hpk’

! L ®py . . ®p
e s te..ae .
n 1Pyt Y, T

| 1 Qpl ~ ~ ka
Since ,,__E;__jg “i(e ®,. ..8 ¢ ), where k 21, p, +...+ Py =p 20,
(pll...pk. Y, i Yk 1 k
®p
Y, < Yy form a CONS in H (X}, we have

THEOREM 2.4

~

=
L,(X) =L,(dF) ® (& H (X))
Pt
- )
Ly{d) ®(® H (X)) if F(s) =0 ;
p=0 ”
e ®p &
L2(X) = nzo{Lz(d(F-F(C+)) ® (®H (X))}, if 0 < F(0) < 1.

p=0

Suppose that every ge¢H(X) has all moments finite. Let P(X) be the
linear space of all polynomials in eclements of H(X) and let Pp(X) (p20)
be the linear space of all polynomials in P(X) of degree at most p; hence
Pb(x) is the set of all constants. Let QO(X) = PO(X) and for p>1 let

Qp(X) be the set of all polynomials in ﬁ)(x) orthogonal to Pp-l(X). Denote

- . \ T
s g ';.,f:;l
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by Hp(X) the closure of Qp(X) in LZ(X). Qp(X) is called the p-th
polynomial chaos and Hp(X) is called the p-th homogenous chaos.

When X is a SIP(O,R;F), in order to have all moments of £eH(X) finite
we introduce the following "moment'" condition:

(M) The moment generating function of F exists, i.e.

f eOLt dF(a) < » for all teR.

Under the condition (M) we have for EeH(X) (by (1.5)),

(o]

2
Hap=fedaﬁdnw)=f&”ﬁﬂiﬁﬂ&0=<5nﬁﬁlp<

where ap = f ade(a), p=0.

THEOREM 2.5 If (M) holds,

L,(X) = & H (X).
2 p=0 p

Proof: It is well-known (see Neveu (1968)) that if e'gteLz(X) for every £eH(X)

then LZ(X) = @ HP(X) (for arbitrary process X). Thus it suffices to show that

p>0
elf';| is integrable if (M) holds. Since under each Pa’ £ is a zero mean Gaussian
2
variable with variance 02 = %—-E; , we have
1
00 2
E cl€| s J - x-(x /202) ds
e /21 o 1o
267 /2 2130 o*/2
" _SL__s.fm g "0 e & Je :
Z
2m © -0
- a 4 (i

1" gt S it o P

)
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Thus, under (M),
o 2
| | =
Eel5! - J E e & dF) < 2 f - dF(a) < ® . 0

We now establish the relationship between the decomposition of Theorem 2.5
and the representation of Theorem 2.4. Assume the condition (M). Then

LZ(X) = Hp(X), and {An, 0<n<®} is a complete set of LZ(A). For each
p20

Fixed q 2> 0, applying the Gram-Schmidt onthonormalization procedure, to {AM}
with respect to the inner product <Am, An>q = £ A9 ye obtain the set
{eg(A), Os<n<wx} which is complete in L,(A) and orthonormal relative to

<',~>q . Note that eg(A) is a polynomial in A with degree n.

Now assume F(0+) = 0. By Theorem 2.4 we have LZ(A) ® (9o HEP(XD = LZ(X)'

p=20
Denote this isomorphism by &. Let
ST DR
(2.6) Hy o0 ¢{en(A)(al) ®H(x)} .
It is not difficult to see from (2.4) that
2.7) Hy o0 e Py O APy, (0
since A ¢ ?2, from the definition of A.
THEOREM 2.6 Under conditions (M) and F(0+) = 0,

(2.8) HX) = e H (X

P o2neqep ™
and a CONS in Hp(X) is given by
( ( o )7 e A ) A(g
2.9) —) e'(A) H A (& « st A )

ql!...qk! n qllal Yl qk)al 'Yk

where 2n+q = p, k 2 1, qp*.--*q = q, y1<...<yk.

e

oy w0 Bt

PR (T N

D
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Proof: First we show that "n q(X) g Hn' q,(X) if (n,q) # (n',q"). It is

clear from (2.6) that Hn q(X) 1 Hn' q,(X] if q # q'. Suppose now that

qQ=q'and n # n'. For 8, 0' ¢ ”oq(x) we have

E{ oed) Y2 8 0) ged, (W) AV 50 }
n (11 n 0’1

= LrraQiayed q . & .
" {en(A)e“,(A)A } ©9,0'>,8q = 0
1

: q 4 =
since <en,en,>q = 0 and thus Hn,q(x) 1 Hn,q(X).

In order to show (2.8) it suffices to show that P (X) = @ H X)
n,q
- S 2n+q<p
because of (2.7). We need to show that 511...£K € @ Hn (X) for all
2n+q—<'p )q

gl,...,gk e H(X) and rl+...+rk < p. For ease of exposition we show this for

T 3 5
£ only. Write & = A°n,n € H(Y). Then

. gl = Ar/an = Ar/Z{H ,(n) + Const. H
n

2(n) + Const. H 2(n)+...}
i r,E

r-2,En r-4,En

=H  ,(£) + Const. A H ,(€) + Const. A’H

(E*...
r,AEn r-2,AEn r-4,AEn2

m
Note that A"H JMe @ H o X)c e H (X). Thsg ¢ e
r-2m,AEn n=0 °’ 2n+qs<r »q 2n+q<p

3| H () and (2.8) is proved.

. ‘ & -q

’ (2.9) follows from (2.4), (2.6), (2.8) and |[edyE¥2|12 = o .
1

Of course HI(X) = H(X) and, for instance HZ(X) = H1 0(X) ® H0 2(X) where

0

|
gi Hy o0 = EEIA-al} and
t

R af 9
H X) = e e SN H A H A : +p, = 2,Y.< .
0,2(¥) = spl (Pl!Pz! pl,azﬁeyl) 92’6;'(€Y2) P1*P, Y,<Y, )

,__,_,...

. S P -

B v i n g o P g b

. LS B e et ; : y
* L i IR - ‘

o o

e

EEE R, The %’\
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3. EQUIVALENCE AND SINGULARITY OF SIP's

In this section we combine the representation of SIP's (Theorem 1.4) and
the dichotomy of GP's to the problem of discriminating between two SIP's.
The discrimination problem is completely solved by identifying the Lebesgue !
decomposition of the distributions of the two processes and the Radon-Nikodym
derivative of the absolutely continuous part. Two processes are called equiv-
alent (~), resp. singular (1), if their induced measures on B(HQT) are equiv-
alent (~), resp. singular (1). The discrimination problem for two second order
SIP's: SIP(0,m;F) and SIP(m,S;G) is fully resolved by first noting that
without loss of generality we may assume that either GP(O,R) ~ GP(m,S) or else
GP(0,aR) L GP(m,BS) for all a,B > 0. When GP(0,R) ~ GP(m,S), the Lebesgue
decomposition of SIM(m,S;G) with respect to SIM(O,R;F) is given in Theorem

i 3.1 and the Radon-Nikodym derivative of the absolutely continuous part in
Theorem 3.4. In particular, if GP(0,R) ~ GP(m,S), then dF ~ dG implies
SIP(0,R;F) ~ SIP(m,S;G), and dF 1 dG implies SIP(0,R;F) 1 SIP(m,S;G). Theorem

3.2 shows that if GP(0,0R) 1 GP(m,BS) for all o« R > 0 then SIP(O,R;F) 1 SIP(m,S;G).

Finally, if dF ~ dG then SIP(0,R;F) and SIP(m,R;G) are either equivalent or

- Cren o ¥

| singular, and necessary and sufficient conditions for equivalence along with
’! an expression for the Radon-Nikodym derivative are given in Theorem 3.5.
i
For reasons of clarity in this section we attach the underlying probability

i

& | s . : :

o o measure to the usual notation for expectation, variance, linear space, etc.
1

We first state the general theorem concerning the equivalence and the
singularity of two GP's (see for instance Pang (1973)). Fix a > 0. Let
X = (xt’ teT) be a GP(0,0R) on the probability space (Q,B(X),Pa). Let Qa

be a second probability on (2,B(X)) under which X is a GP(m,aS). Then either

AT
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E, .0 P~ i ly if the following conditions are
‘a Qa or Pa 1 Qa' Pa Qa if and only 1 1 g

satisfied:

€*) There exist positive constants Kl and K2 such that

C P E < K / {
RZVarp € VarQ ) kl\arpa,

o Q
’ : ; N
for every £¢L(X), the linear space of all finite linear combinations Zlanxt

n
T el
n

%) There exists EeHP (X) such that m(t) = Ep (&Xt), teT; i.e. meR(R),
o o
the reproducing kernel Hilbert space of the covariance R.

(%%*) If Ba: HP (x) » Hp (X) is the positive self-adjoint operator defined
o o

%

Moreover if conditions (*), (**) and (***) hold true and if {Xn} and {in}

by Cov_ (E,n) = Covp (E,Ban) for all £, neL(X), then Ba - I is Hilbert-Schmidt.
o

denote the sets of eigenvalues and corresponding normalized eigenvectors of

B , then

a

dQ 3 F
(3.1) dTO‘ = exp{Bal/ZE - é—\’arp (Bal/zg) - % Z[grzl(-i-~ -1) + logi 1}
o n

From now on X = (X teT) will be a second order nondegenerated SIP

e
(0,R;F) on (2,B(X),P). Recall that R is a covariance function and F is a
distribution function on R with finite first moment ay - P is a mixture
of Gaussian measures, P(E) = fPa(E)dF(a), and under each Pu’ X is a
GP(0,aR). Let A be the r.v. associated with X and P as in Section 1.

Now consider a second probability measure Q on (2,B(X)) under which X
is a second order nondegenerate SIP (m,S:G). Then Q(E) = an(E)dG(a) and
under cach Q , X is a GP(m,aS). Denote the first moment of G by ai. We

are interested in the equivalence and mutual singularity of the measures P

and Q. Since PO 1 Q0 if m # 0, we shall assume throughout this section that

L g S g i o
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F(0+) = 0. Also we may assume without loss of generality that either Pl > Ql

or Pa 1 Q8 for all a,B > 0, since clearly
B6.2) a SIP (m,R;F(a)), is also a SIP (m,cR;F(ca)) for every ¢ > 0 .

THEOREM 3.1 Let P1 > Q1 and let dG = dG' + dG" be the Lebesgue decom-

position of dG with respect to dF with dG' << dF and dG" 1 dF. Then
Q(E) = JQ (E)dG'(w) + [Q_ (E)dG" (a)

is the Lebesgue decomposition of Q with respect to P. Hence if Pl & Ql and

dF ~ dG then P ~ Q; if P1 ~ Q1 and dF 1 dG then P 1 Q.

Proof: Note that P1 ~ Q1 implies Pa ~ Qa for all a > 0. Let P(E) = 0. Then
IPa(E)dF(Q) = 0 and Pa(E) = 0 a.e. [dF]. Since POL 2 Qa and dG' << dF, we have
Q,(E) = 0 a.e. [dG'], and thus an(E)dG'(a) = 0. This implies an(°)dF(a)<<P(-).

Since dG" 1 dF, there exists EeB(IR) such that jEdG”(a) = fE,dF(a) = 0.

Note that A = a a.e. [Qa] because A = o a.e. [Pu] and Pa = Qa' Thus we have

P(AcE') = [P (AcE')dF(a) = [E,dF(a) =0,
[Q,(A€E)dG" () = [.dG"(0) = O,
which imply an(-)dG”(a) LP(e) . 0

The second assertion of Theorem 3.1 was first stated in Gualtierotti

(1974) for P and Q SIM's on a separable Hilbert space.
THEOREM 3.2 If Pa i) QB for all a,B > 0 then P 1 Q.

Proof: The proof is adapted from Pang (1973).
The following remarks will be used without further comment. For

£,neL(X), we have

>

S o A oy b M vy i : ’ "Q’b"f’:%‘
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E, &£ = ELE = 0, Covp (E,M) = &ﬁ Covp(Esn)

(3.3) g % d
E,.&=EE, Cov, (E,n) = ~%—-cov (£,n)
Qa Q Qu a'y Q
If P and Q, satisfy (*) then for every sequence {ﬁn} in H, (X) there exist
|
versions of En’s such that {ﬁn} is also a sequence in HP(X), “p (x), HQ(X),

a
HQ (X) for all a > 0, and satisfies (3.3). (The proof of this is similar to
o

that of Theorem 1.3).
Since P1 1 Ql’ one of the conditions (*), (**) and (***) must be violated.
First suppose that (*) is not satisfied; for instance, suppose that there

exists no constant Ky such that Vvar, & < K1 Var,, €. Then there exists a

Q
1 1
sequence {in} in L(X) such that Var,, En = 1 and VarQ £ > n2. Then, as n > «,
1 1

we have

3 al
P(le | > v) < =+,

QCle | > vy = Jo (lg | > /n)dG()
2

ot 12

> @1 - |
: -(om)-l/2

x(—
: 4 e - dx)dG(a)
V21
which imply P 1 Q.
Next suppose (*) holds but (**) does not hold. Then, for each n, there
exists EneL(X) such that

1/2 1/2
EQICn > (n VarQle) > (Kyn Varplgn)

(see Pang (1973)). Consequently, as n »> «

JY
—t
A

4o
1 . (R 1/2 1
e B i N L R L A Fregnnt

2
—
oy
v
r#k—
oy
R
v

1
QUIEL-Eqenl < 3EEy)

v

1
QUIEL-EgE | < 5
4ai

2] -]




L

Thus if b = Limsup E
m
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and thus P 1 Q.

Finally, suppose that (*) and (**) are satisfied, but (***) is not. We

Mmay assume in this case that m = 0. We claim that

there exists a sequence {Qn} in Hp (X) such that CovP (Ei,Ej)

1 1
2
= A £.,€.) = u.68. . 1- = ©
(3.4) §;; and Conl(,l,jJ) Mi8;; where J(l-p) and
El - un > 0 for all n or < 0 for all n.
n

Given this, consider the events

- 1) <

mo o, 1
En = 1L £ z

—0~

1
(E;'- Un)}

il
= —

We shall deal with the case al»— “n > 0 only. Note that Kz < un < K1 by: (*]..
n

For a > 1 we have

LA i

m m
2.
PE) = Pl{gagn(—u: -1 <3 g(i — )

Un n
m m
S LD RIS DY CR IS DY S W JOTN-
177y *n o 2K, 1
K
152 1
¥ 8 it
K n 2
2 ),
and for B < 1
m m
3 = 2-‘1- <.]; i_
Qg (E) Ql{g ssn(un D <3 % G - )
i T 2 1 N 5 2
" Q] Ea-tip) G- -] Zx L () |
8k ’
,\l-~——~—l~___->

@ !
m 2 J
2y (T-u)

, then PQ(E) = 0 for a > 1 and QB(E) = 1 for B € 1. This

implies by (3.2) that for all a,b > 0 there exist EabeB(X) such that

(o A P iy b b
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Pu(hab) = 0 for @« 2 a and QB(hab) =1 for B < b. Hence, as a - 0 and

b -+ o, we have

A

P(E pu(Eab)dF(G) < F(a) » F(0+) = O,

ab) N

Q(E,) =

/
[0,a]
[é Qg (E,,)4G(B) = G(b) ~ 1,

b]
and consequently P 1 Q.

To complete the proof, we now verify (3.4). Two cases are to be

considered. First, suppose that B, - I is compact but not Hilbert-Schmidt.

1

Let {Xn} and {nn} be the ergenvalues and the corresponding normalized

2
ergenvectors of B, - I. We have An =+ 0, ZAn = « and Blnn = (1+An)nn.

1

By choosing a suitable subsequence of {nn}, we obtain the desired sequence

{En} in (3.4). Second, suppose that B. - I is not compact. Being invertible

1
(by (*)), B1 is not compact and thus its essential spectrum is not {0}.
Furthermore, since Bl - I is not compact, there is at least one point

p # 1 in the essential spectrum of Bl’ and thus also in the essential
numerical range of B. (For a nice discussion of essential spectrum and
essential numerical range see Fillmore et. al. (1972)). Now by a known
result in operator theory (Lemma 2 in Anderson and Stampfli (1971) stated
for a separable Hilbert space but true for a nonseparable Hilbert space
as well), there exists an orthonormal sequence {nn} in Hp (X) such that 5

1

Cov(ni, an) = uié and s > W Again {En} in (3.4) is obtained by choosing

ij
a suitable subsequence of {nn}. 0
Theorem 3.2 is not true in general, without the Gaussian assumption on

POl and QB’ since there are uncountably many measures involved. For example,

if Pa is the uniform measure on [0,1] for each a, if QB is the one point

mass at B for each B, and if dF ~ dG ~ P,, then Pa i QB for all a and g,

1’

but P ~ Q.

- .MAA.MA-” ok
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Now suppose that P, ~ Q. and let Q'(+) = [Q (*)dG'(a) be the absolutely
P 1 0}

1

continuous part of Q given in Theorem 3.1. We will calculate the Radon-
dq' " ’
Nikodym derivative a Theorems 3.1 and 3.2, together with the expression
'
of g%— , provide a complete solution to the problem of discriminating between

two SIP's. To this end, we prepare the following

dQ

o
Lemma 3.3 Let = e : ;
E UG S Pq dpa a.s. [Pa]. If oA(m)(w) is a measurable function,
then
Q'

dp (U)) = pA(U)) %C-}L (A(w)) a.s. [p].

Proof: For every E ¢ B(X), we have

/ Py %gl (adp = [{f 2, %%l (a)dql} dF (a)
E E

fQ,(E)dG' (@) = Q' (E)
as required. 0

Note that the measurability of P (w) is not automatic since eachoa

Aw)

can be arbitrarily changed on a set of P -measure zero.
o

Theorem 3.4 Suppose P1 ~ Ql' Then
(i) there exists &eH (X) such that m(t) = —E-E (EX,), teT;
P 0y P t
(ii) there exists a self-adjoint positive operator B on HP(X)

defined by

&'}' Con(E,n) = ﬁ Cov, (£, Bn)

for all &, neL(X), and such that B - 1 is Hilbert-Schmidt.

Moreover if {An} and {En} is the set of eigenvalues of B and their corresponding

; ; 1/2
eigenvectors with norms O / , then

1

3.5 B . exp {% g 1/2 . i&lK' Varp(B‘l/zg)
1

€

(

>z

1
2

0~ 8

1 dG!
(X;'-1)+1°gxn]} *IF (GO

s
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1/2

Proof: Let X = A"“°Y be the canonical representation of X, where Y is a

GP(0,R) under P and under each P (x>0). Tt is clear that each ErHP(X)
or H (X) has a version of the form A 1/2
have ip(X) = Al/“H(Y) = Hp (X). Therefore every operator on HP(X) induces
an operator on “P (X) in a: obvious way, and vice versa.

n with anP(Y). In this sense, we

o
Since Pl ~ Ql’ there exists a geup (x) such that m(t) = EP (Ext),teT,

1 1
and a self-adjoint positive operator B1 on Hp (X) defined by Con (£,n) =
1 1
ovp (E,Bln),g,neL(X). A simple computation shows that £ satisfies (i)

1
and that B, the operator on HP(X) induced by Bl’ satisfies (ii).

By Lemma 3.3, (3.5) will follow if we show

dQ 3 i ,
.6) = = exp 8% Lovar, @ %)
o 1 ;
2 |
oo g 1

1 g[—g- —; —1)+logkn]} a.s. [Pa].

Let B be the operator on HP (X) induced by B. Again, a simple computation
shows that o g satisfies cond1t1on (**), and that B satisfies condition

(***) and has eigenvalues {An} and corresponding eigenvectors

{a 1/25 }. Thus we have by (3.1)

dQ

o 1 -1/2 1 1/2
== = exp {>-B & - —5 Var, (B )
dPa S Zaz a 6
1
o Z[ ( l)+logkn]} a.S-[Pa]

which is equivalent to (3.6) since B&I/ZE e Y% 4. LBy ks a

T At g

N NS e .M-.vc' D cdodic
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Theorem 3.5 Qppose R = S and dF ~ dG. Then either P ~ Q or
P 1Q, and P ~ Q if and only if
, (3.7) m(t) = EP(EXt),tcT.
]
% for some geHP(X). In the case of equivalence,
o
do o0 46
(3-8) dp = exp { A (E 2 Val‘PE) C dF (A)
Proof: Clearly if (3.7) holds we have P1 ~ Ql’ and if (3.7) does not hold
we have Pa 1 QB for all a,B. The first assertion follows then from
Theorems 3.1 and 3.2. (3.8) follows from Theorem 3.4 by comparing (3.7)
with (3.6) and noting that R = S implies B = I. O
Sytaya (1969) derived (3.8) for P and Q SIM's on a separable Hilbert
space and F = G.
%
i |
2
|
!
R
i
]
;
|
R O
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4. NONLINEAR ESTIMATION AND PREDICTION

Ll e

Using the tensor product structure of the nonlinear space we solve the
general nonlinear estimation problem for SIP's, and in particular for GP's,
in the sense that we reduce the nonlinear problem to a standard linear estima-
tion problem, the theory of which is well developed. Also we derive a lower
bound for the mean square error of the nonlinear prediction for a certain class

of prediction problems.

4.1 Nonlinear Estimation

Let X = (X,_, teT) be a second order process with zero mean. Consider the

t
following estimation problem: we observe Xt for teS, a subset of T, and we want
{ to estimate an Lz-functional 6 of X based on the observations. We are interested

in finding the best estimate 6, an Lz—functional of (Xt, teS) which minimizes

the mean square error of estimation E(G—G)Z, and it is well known that

6 = E(0]X,, tes)

A~

In general, 0 is extremely difficult to determine. However, if X is a SIP, we

ey, 4 "

| have a complete solution. In formulating the main result we will use the notation
i of Section 2, and identify LZ(X) with LZ(A) ® (PQOHSP(X)) by Theorem 2.4. We
1 >

k) let L,(X;S) = L,(X

£ teS) and H(X;S) = H(Xt’ teS).

THEOREM 4.1 Let X be a nondegenerate SIP (0,R;F) with F(0+) = 0 and let

65L2(X) have the following orthogonal development

Pavivop ® @
pal o R e e e .. B
> c e *PLEP LAk S " Yk
=

“ . .‘ﬂ‘fﬁ
e R vt e D i s

Papes A o e o 7 s
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Suppose that (Xt’ teS) is nondegenerate. Then

~ ~

P Py...pP P S
S ) WPy oy e 8 €15 82K
nx1 Py*-..*p=p e 1 k
p>0 Yl . <yk
where for EeH(X),
€

= ProjH(x;S)E (=E(g;xt, teS))

Proof: Recall the definition of the r.v. A and observe that it is independent
| of the choice of the defining sequence {Ei}. It then follows that AeLZ(X;S)

, and every peLz(X;S) has the orthogonal development

ql...q. ;qIN v ;qj
p=J ) b Te (A) ® (n, '5...8 n, 9
= d gD 61...Gj m 61 Gj
=

) where {né, SeA} (A linearly ordered) is a CONS in H(X;S).

We have
g = E(6|Xt, teS) = PTOJLZ(X;S)G
Pp-- Py ®. . °p,
" = 7 Z a Proj €. (A) ® (£ '®...8E N

nzO 1&

? ‘ Thus to show the theorem it suffices to show that

~ ~

| Proj e (A) ® (EGPIE 5 ¢
- = JLZ(X;S) n i

p & @
k) = en(A) ® (gy 1@...0 £ k)

If El,...,E eH(X) and nl,...,npsH(X ;S) then it follows from <€ s >H(X)
E.,n >H(X) that

~

al

<g eri® E , N, 8...8 N>~ =<t ®...8¢ - 8...8 1> ~
1 p 1 np HGP(X] El Ep n1 np HOP(X)

and hence for each peLz(X;S) we have

2

g oy a b




upl il b Spk)
<e (A) ® (C e » p?
M % L,(X)
G v ol ®p,
: j
L g ket Q(EH
j
. 3p
3 ¥ b ’ <e_(A) ® (EY1@
% 1
_ £P) &~ %P
= <en(A) ® (gyl ®...® EYk
: ’Pl 5 8p
Since en(A) ® (g EY

% k

A similar result can be obtained when F(0+) > 0.

the case where X is in fact a Gaussian process.

L 003 g,

COROLLARY 4.2

orthogonal development

Py---P, ® _ _ @
8 =) )y g k EY l1&...5 £ k
P20 py+. <+ *P =P Y1 Yk
L/REERN ¢
k
Then o ~
A PyevePy 99 . o P
6=7 z aYl Yk I .. ALk
p20 pl SPL®p 1"k " Yk
L e
where for £ € H(X),
£ = Proj”(x;s)i (=E(€|Xt, teS))
Consequently,
P'°36§ C s " T ) P’°36§ %

0P
k

), 0>
L,(X)

v b M P o

TN e ——— et reinsnrint S NS

8e, 1, e ) @ mﬁl ...

k) € LZ(X;S), the result follows.

HoP(X), q, = H®P(X); and Theorem 4.1 yields the following.
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Of particular interest is

In this case we have A = 1 = o

Let X be a GP(0,R) and let 6 ¢ LZ(X) have the following

’
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where 6?(3) denotes the p-th homogeneous chaos of (Xt, teS).

COROLLARY 4.3

If X Is a nondegenerate SIP (0,R;F) and if fethF(a) < ®
for allt ¢ R, then for all EeH(X),

EH E1lx, , tes) = H A
poaéfgz ¥ p:aéfgz
1 1

@& ,

20

E(exp(€ - 5 EEC}|X,, teS) = expf - oo EE')
1 1

In particular, if X is a GP(0,R) and &EeH(X), then
EH) ge2(B)]X, teS) = H pe2(B)

E(expig - %E&z}lxt, teS) =expl{& - %EEZ} .
If X is a zero mean Gaussian martingale then

2
1
Hp,EXi(Xt)’ exp{xt - ,Ext}

are martingales.

Proof: Only the first assertion requires proof and we shall prove it for

the case F(0+) = 0 only. fetadF(a) <o, te IR, implies Ap/ze LZ(A). Thus

i
BRereren T W NG T
P+ Gp

D
—
"
=
>
~
Yy
e
1

1
. S (by (2.4))

1
E -

LA 2 ®p ~
(P3G BE e Ly(A) 8 HP(X) c LX)
1

[}

and by Theorem 4.1 P

. AZ B
P = DD e f®w
1 p,—Ee?
Q

D>

Now write
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6, = explg - E€ %) = ) —H ()
2 p>0 p! p’aéfgz
1

the convergence of the series being pointwise. It follows from the expression

of 9 that all terms in the above sum are mutually orthogonal and each term
EEF

has square norm —E s
P p:

3

verges also in L2(X) and

where ap = fade(a). Therefore the series con-

A 1 1 A
6, =) —EM () IX,, teS) = S - (E)
2 " b o1 B, _ae M o 7 1 e
1 1
R e
= exp[E - Z_GI E£ } . D

For X a Wiener process it is well known that (Xi-t, t>0) and
(exp{Xt = %J, t>0) are martingales.
If X is a zero mean Gaussian process and T = (-»,®) (or any interval)

then by Corollary 4.3 we have that for all s<t,

EH  ,(X)|X,, uss) = H X

)
t,s
p’EXt p,EXt

s
where

X e E(XtIXu, us<s)

~
An expression for Xt ¢ can always be obtained via the Cramér-Hida representation

of X:
Z 15 e ™ e, waz™

n=1 -

>
I

Then we have

>< >
I
z

S
e 1] e
LS n=1 - u
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The case with p = 2, i.e. the Lz-functional Xf - Exi , is considered in Hida and
Kallianpur (1975) for a special class of Gaussian processes X. It should be
clear that whenever a simple expression is available for it s’ then a simple

b

expression is also found for the nonlinear predictor of H Z(Xt)'
X

p’E t
We close this section with a simple example. Let (Xt, -oCt<®) be a station-
ary Gaussian process with EXt = 0, EX% = 1, and continuous covariance R(t), which

is reciprocal or quasi-Markov on [0,T]. Then it is known [13, 5]

that R(t), 0§tST, has one of the following three forms: Ava-at + (1-A)eat where

a>0,A>% Tc< (Za)_llog(A/lA-ll); cos at where a > 0, T<m/a; 1l-at where

IA

0 <ac< 2/T. We want to estimate 6, an Lz-functional of Xt’ 0<u <t <v<T,

based on observations Xs’ seS = [0,u]u[v,T]. Since X is reciprocal or quasi-

Markov on [0,T] we have

X, = E(xtlxs, seS) = aX + BX,

where

R(u-t)-R(v-t)R(u-v)

_ R(v-t)-R(u-t)R(u-v) ) |
l-Rz(u-v)

I-Rz(u-v) ]

a =

> B

Since 6 is an Lz—functional of X¢o it has the orthogonal development

6 = Z apHp(Xt), and thus the best estimate 6 of 8 is given by

Baefam ALy = J e

p20 P p,EXt p20 P p,a2+62+2aBR(u-v)

(axu + BXV)

4.2 Nonlinear Prediction |

Consider the following prediction problem: Let X = (Xt, teT), T an interval, |

be a second order process and let Y = (Yt = et(xt), teT) with St a real function

el
el © o < g e s B Y - ‘
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such that EYt = 0 and EYi < o for all teT. Suppose that on the basis of the
past values of Y up to time t we want to find the best prediction of the future

value Yt+ , T > 0. Two predictors are of special interest: the optimal linear

T
predictor Qg(t,r) and the nonlinear predictor Ynl(t,r). The optimality is

in the sense of minimizing the mean square error within the class of all linear

and nonlinear predictors respectively. It is well known that
Y (8,1 = E(Yt+T|YS, s<t) , ¥, (t.2) = Pro;H(Ys’Sst)Yt+T A
The corresponding mean square predictor errors are denoted by
00 (k1) = ElVL -% (eotil° . k.t = BT . Yo (t,700°
ng* t+T n& 7’ 3 Qor 2 t+T L7

Now introduce a '"super predictor" Ys(t,r) as the nonlinear predictor of Yt+T

i based on (Xs, s<t), i.e.

?S(t,r) = E(Y el

t+T'xs

and denote its mean square error by Uz(t,T). It is clear that

(4.1) cz(t,r) < Gil(t’T) < Oi(t,T)

® ran o .

and thus Oi provides a lower bound for the mean square errors of linear and

" REEEEI  EE

nonlinear prediction. If X is a SIP then d§ can be obtained as in Section
4.1 by solving an estimation problem. If, in addition, et is one-to-one
“ for each t then the o-fields generated by Xt and Yt coincide. 1In this case

|X_, s<t) , and the nonlinear predictor can be

YnQ(t,T) = Ys(t,r) = E(Yt+1 "

again obtained by solving an estimation problem.
In the important case where X = (Xt, t eR) is a zero mean stationary
Gaussian process with covariance function R(t,s) = R(t-s) and et = 0 we can

calculate the lower bound Gz(t,T) = oi(r) as follows. Write

B R A B —— S ——

o A e i B e,

T g
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o]

(4.2) Yo = 0(Xp) pZIaPHp,oz(xt)

where 02 = Exg. Note that for all &,neH(X),

EHy g2 (VM) pro(m) = pt < £%,n"P> = pr{EEM)P

EHP’EEZ(E)Hq,Enz(n) 0 if p # q.

Thus we have

(4.3) EY.Y

s 2:p
o z p!apR (t-s)

p=1

Let X(t,T) = E(Xt+rlxs’ s<t) be the optimal nonlinear predictor of X .
(which is also the optimal linear predictor since X is Gaussian),and og(r)

be the mean square error. Then by Corollary 4.3,

(4.4) el = Jam o e
pz1 P p EX"(t,T)
and hence
- P 5 00 2
OS(T) = E(Yt+T - Ys(t,r)) = EYt+T E(Ys(t,r))
k 2 2p - R R |
(4.5) = 1 plago™ - ] plagfo®-04(D)

px1 p21

= J pta{c?? - [o%-02 (1P} .
p=1 P ¢
It is well known from the general theory of stationary processes (e.g.

Doob (1953), Rozanov (1967)] that Ug(T) can be obtained analytically (if not
explicitly) through the Wiener-Paley factorization theorem if X is linearly
regular, i.e. n H(X,, sst) = {0}. When X is mean square continuous and linearly
regular we now show that so is Y, and hence Gi(T) can be obtained analytically.
Y is clearly stationary and its mean square continuity follows from the con-

tinuity of R and (4.3). The linear regularity of Y follows from the fact that

9 rﬂusrﬁi:ii
3 .
it ..a.-;n-hw*** v A > i
hg oy A= 2 sl el e "
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a Gaussian process is linearly regular if and only if its remote past is
trivial. Here we give a purely geometric proof of this property; for a proof
using Kolmogorov's zero-one law see Rosanov (1967) and Ibragimov and Linnik

(1971).

THEOREM 4.4 Let X = (Xt’ telR) be a zero mean Gaussian process ,
Bt = B(XS, s<t), teIR, and B = ntBt' Then X is linearly regular if and only

if B__ is trivial.

Proof: The "if" part is clear. For the '"only if' part, note first that the
triviality of B_. is equivalent to the condition

neL, (X, sst) = {o} .

For simplicity we write Lt = LZ(XS, s<t) and Ht = H(XS, s<t). Thus we need
to show that H = o H, = {0} implies Lo = Ly = {0}, So assume that H _ = {0}
i and let BeL__. We will show that 6 = Q.
Fix a sequence {tn, n=1,2,...} decreasing to -». The family of subspaces

H_  has the property that Ht < H

A ’ for m < n and oH, = {0}. Thus it follows

n m n n
readily (see e.g. Rozanov (1967), pp. 53, 56) that lim ProjH £ = 0 for all
n
t

i n
| £eH(X), and hence

Qo
H = epD
% peg B

- e RS

where Dn is the orthogonal complement of Ht
n+l

In each Dn pick a CONS; then pool all these CONS’s together to get a CONS

t t n

inH_, i.e., H = H ®D .
t
n n n+1l

{€., YeT'} in H_ . Observe that
Y tl

PrOJH Ey = 0 or €Y %
tn

(4.6)

Since GeL_m € Lt » it has the orthogonal development
1

«ﬂi“n PP D o
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Dyaanp,  Bo. - o Ep
6= 7 ¥ gl EptlE gk
p=0 Py*. - *P =P 1% ™ Yk
Vi<
and by Corollary 4.2,
P,--.P sp 5P
. 1 k . R f k
8=Proj, 8=77Ja (Proj,, E&._) ®...®(Proj,, £ )
Lt L SR Ht " He ™%
n n n
which together with (4.6) yields
® P
2 Pp-Py 2 . T P 12
4.7 E6" =] } [a )|l (Proj,, £_) ®...0(Proj, £ ) ||
Tty th " L

Now let n > © in (4.7). The limit can be taken inside the summation since

>

e o o
each summand is bounded by Ing ®...8 £Y |19; and the limit of each
1 k

summand is zero because of (4.6). Consequently 562 =0, i.e. 6 = 0, and the

theorem is proved. a

Jaglom (1970) has considered the problem of comparing the performance of
optimal linear and nonlinear predictors for polynomial functions of certain
stationary Markov processes. Donelson and Maltz (1972) studied this problem
in detail for polynomial functions of the Ornstein-Uhlenbeck process. The
inequality (4.1) plays a central role in such studies. As an example, let X
be the Ornstein-Uhlenbeck process, i.e. a zero mean Gaussian process with
covariance function R(t,s) = e—lt—si, and let Y be given by (4.2). By the

Markov property of X we have

[X , sst) = e '

X(t,t) = E(xt+T " £

Thus it follows from (4.4) and (4.5) that

-T -pT
Y(t,7) = JaH , (ex)= JaeP'n ),
: p=1 P pse . > p>1 P P

- S -
1 g oo it M F
: ey " e 2 L _
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ol(r) = ] plalQl - g B%y2
pz1 P

This result, with Yt a polynomial function of X has been obtained by Donelson
and Maltz using a different approach; they also compared oi with oi and found
that these two errors are frequently close to one another. Finally, we remark ‘

that if Yt = Hp(Xt) then
v - v ~ Pt
Ynl(t’T) = Ys(t:T) =€ Yt ’

2 e st
OnQ(T) = OS(T) = 1 e
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